Oxyanion and tetrahedral intermediate stabilisation by subtilisin: detection of a new tetrahedral adduct.

نویسندگان

  • Nicole Howe
  • Louis Rogers
  • Chandralal Hewage
  • J Paul G Malthouse
چکیده

The peptide-derived glyoxal inhibitor Z-Ala-Ala-Phe-glyoxal has been shown to be approximately 10 fold more effective as an inhibitor of subtilisin than Z-Ala-Pro-Phe-glyoxal. Signals at 107.2 ppm and 200.5 ppm are observed for the glyoxal keto and aldehyde carbons of the inhibitor bound to subtilisin, showing that the glyoxal keto and aldehyde carbons are sp(3) and sp(2) hybridised respectively. The signal at 107.2 ppm from the carbon atom attached to the hemiketal oxyanion is formed in a slow exchange process that involves the dehydration of the glyoxal aldehyde carbon. Two additional signals are observed one at 108.2 ppm and the other at 90.9 ppm for the glyoxal keto and aldehyde carbons respectively at pHs 6-8 demonstrating that subtilisin forms an additional tetrahedral adduct with Z-Ala-Ala-Phe-glyoxal in which both the glyoxal keto and aldehyde carbons are sp(3) hybridised. For the first time we can quantify oxyanion stabilisation in subtilisin. We conclude that oxyanion stabilisation is more effective in subtilisin than in chymotrypsin. Using (1)H-NMR we show that the binding of Z-Ala-Ala-Phe-glyoxal to subtilisin raises the pK(a) of the imidazolium ion of the active site histidine residue promoting oxyanion stabilisation. The mechanistic significance of these results is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1H-NMR studies of oxyanion and tetrahedral intermediate stabilization by the serine proteinases: optimizing inhibitor warhead specificity and potency by studying the inhibition of the serine proteinases by peptide-derived chloromethane and glyoxal inhibitors

Catalysis by the serine proteinases proceeds via a tetrahedral intermediate whose oxyanion is stabilized by hydrogen-bonding in the oxyanion hole. There have been extensive 13C-NMR studies of oxyanion and tetrahedral intermediate stabilization in trypsin, subtilisin and chymotrypsin using substrate-derived chloromethane inhibitors. One of the limitations of these inhibitors is that they irrever...

متن کامل

Determination of the ionization state of the active-site histidine in a subtilisin-(chloromethane inhibitor) derivative by 13C-NMR.

Subtilisin BPN' has been alkylated using benzyloxycarbonyl-glycylglycyl[1-13C]phenylalanylchloromethane+ ++. Using difference 13C-NMR spectroscopy a single signal due to the 13C-enriched alpha-methylene carbon of the subtilisin-(chloromethane inhibitor) derivative was detected. No evidence for the denaturation/ autolysis of this derivative was obtained from pH 3.5 to 11.5. However, incubating a...

متن کامل

Catalytic role of proton transfers in the formation of a tetrahedral adduct in a serine carboxyl peptidase.

Quantum mechanical/molecular mechanical molecular dynamics and 2D free energy simulations are performed to study the formation of a tetrahedral adduct by an inhibitor N-acetyl-isoleucyl-prolyl-phenylalaninal (AcIPF) in a serine-carboxyl peptidase (kumamolisin-As) and elucidate the role of proton transfers during the nucleophilic attack by the Ser278 catalytic residue. It is shown that although ...

متن کامل

A general acid-base mechanism for the stabilization of a tetrahedral adduct in a serine-carboxyl peptidase: a computational study.

The QM/MM MD and free energy simulations show that serine-carboxyl peptidases (sedolisins) may stabilize the tetrahedral intermediates and tetrahedral adducts primarily through a general acid-base mechanism involving Asp (Asp164 for kumamolisin-As) rather than the oxyanion-hole interactions as in the cases of serine proteases.

متن کامل

Catalytic mechanism of rhomboid protease GlpG probed by 3,4-dichloroisocoumarin and diisopropyl fluorophosphonate.

Rhomboid proteases have many important biological functions. Unlike soluble serine proteases such as chymotrypsin, the active site of rhomboid protease, which contains a Ser-His catalytic dyad, is submerged in the membrane and surrounded by membrane-spanning helices. Previous crystallographic analyses of GlpG, a bacterial rhomboid protease, and its complex with isocoumarin have provided insight...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1794 8  شماره 

صفحات  -

تاریخ انتشار 2009